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The behavior of an infinite ice sheet upon motion thereon of a load limited in plan has been considered in [1-8] and 
other studies. Practice interest in the stress deformed state of an ice sheet in the presence of a free edge along which a pressure 

system moves for the purpose of ice breaking has arisen relatively recently. This is related to the introduction of resonant ice 
breaking methods realized with amphibious air cushion vessels (ACV's) [2]. 

Experiments under model and natural conditions (Fig. 1) have noted significant changes in the ice-breaking capabilities 
of such craft in the presence of an open area of water and corresponding vessel maneuvering. The experiments showed a 

doubling of the ice thickness breakable in operations carried out in the immediate vicinity of an edge. However all the 
advantages of such ice-breaking technology and complete principles of ice behavior under such loading conditions remain to 
be described. 

The present study will consider the stress-deformed state of a semi-infinite ice sheet under the action of a moving ACV. 
The problem will be solved numerically. 

Problem formulation and theoretical solution. We choose as the main equation that of the viscoelastic ice oscillations 
under the influence of a point force P moving with velocity v: 

c;/"3 1 + r l,~ ~ ~, + pwgw + pe,~ ~t 2 := (1) - -  - - +  [ 
3 Pw-~-t  0 

= / '~(x - ~, y -  0). 

Here G is the shear modulus of the ice elasticity; h, the ice sheet thickness; w, the deflection of the ice; Pi and Pw, the densities 
of ice and water; g, acceleration of gravity; @, the liquid motion potential, satisfying the boundary conditions and the Laplace 
equation; 8, a delta-function; re, the deformation relaxation time. 

The axes x and y lie in the plane of the ice sheet, with the x-axis along the direction of load motion, and the z-axis 

directed upward. 

The liquid motion potential satisfies the boundary conditions: 

;~,I, = O; (2) 
Oz I : = -H 

; .v ; ~  = 0 ;,t Oz -" = o (3) 

(where H is the basin depth). 

Numerical solution can be simplified by some preliminary transformations of the original equations. 
We satisfy Eq. (2), writing @ in the form 

~I~ = ~ ( x , y , t ) c h k ( z  + H), k = const. 

Substituting Eq. (4) into Eq. (3) and the Laplace equation 
~2q) 02q) ~2qb 
~ + - - + - - = 0 ,  dx 2 .̀~2,. 2 ijz 2 

we obtain 

(4) 
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Fig. 1 
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Transforming to  a moving coordinate system ~ = x - -  v t ,  r = t ,  we reduce Eq. ( 1 )  to  the form 

_ _  Gh3 ( a a) ( a2 a2 

+ o  2 w + p w ' ~ ' - ~  ~ -  , - o  

We write w as w = w I + w 2, and r as r = q~l + I'2, where w 1 and r are independent of  r. Then 

0 4 ~2wl a~l  

3 z-O 

= p ~ ( ~ , y = 0 ) , - - ~ - - ( 1  + ~ , - ~ - v  )V%'~+Pw~'~+P,~h ~ 

- ~ , , ~  + e ~ )  w, + p , ~ - , , - ~ - ) 1 , . o  =o 

or in the former variables 

(7) 

(8) 

Gh 3 / a I 4 02w2 a~2 
- -  V w 2 + pwgw2 + + = (9) -7-/1 * ~* ~,, Pe,h~ P~TI,-o 0 

Equation (8) describes the steady state problem, Eq. (9), the natural ice oscillations about the surface specified by Eq. 
(8), and will not be considered further. 

After transformation to the moving coordinate system Eqs. (5), (6) take on the form 

~2, ~ (lO) 
a~2 + ~ 2 + k ' ~ - - 0 ;  

aw a~, (11) 
a-'~" -- o " ~  - ~okshkH -- O. 

Considering that ,I~ = ~t + ~2, (~1 being independent of  ~'), we also take 

= ~l(~,y) + ~o2(~,y,r ). 

Then, for w 1, ~1, we obtain from Eqs. (10), (11) 

02~ t 02PI 
a7 + a'~ "T + k2~'~ = 0; (12) 

ow t ( 1 3 )  
v - ' ~  4 ~plkshkH = O. 
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Since ,I, I = ~ol( ~, y)chk(z + H) it then follows from Eq. (4) that from Eqs. (8), (12), (13) we have 

-•V 4wl - 

Gh 3 

- - P w V ~  chkH = Pc5 (~,y = 0), 

~2p~ 02ol dwi 
O~--"--i" + - -  + k2~o~ = O, o - ~ -  + ~oakshkH = O. dy 2 

Eliminating 'r from Eq. (14), we arrive at 

(14) 

G h'~ Gh 3 O 
3 V~w~ + r , v - - ~ - ~  V4w~ + pwgw~ + (peh 

DW ) i~'wl 
+ 7 cthkH J" O~ 2 = Pd(~,y = 0), (15) 

, 3  
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It is difficult to solve Eq. (15) analytically, so a numerical determination of w I will be expedient. 

To do this we use the finite element method. We consider a limited, but sufficiently large region of the ice field and 
adjacent open water, on the boundary of which we may consider displacements equal to zero. The dimensions of the region 
are selected in solution of each concrete problem. To construct the discrete model we use a rectangular finite element with 16 
degrees of freedom 

%(~'Y) = 2 N(~.y)q,, (16) 

where Ni(l~, y) are form functions and qi are lattice point displacements. 

Substituting Eq. (16) in Eq. (15) and using the Bubnov-Galerkin method, we arrive at the system of equations 

IKIlq} = { P } , ( l r l -  k2lSl){v}  = O. (17) 

Here {q} is the lattice point displacement vector; {P}, the external load vector; [K], [T], [S], matrices formed of the 
corresponding individual finite element matrices. 

We write {q} as a linear combination 

{q} = 2 C,{q},, (18) 
l =  I 

where {qi} is the eigenvector of the matrix [T] - -  k2[S], corresponding to the eigenvatue ki 2 and n is the number f node 
displacements. Then 

[ K I { q } C  = {1'}. (19) 
t = l  

Here the matrix [K]i corresponds to the eigenvalue ki2. 

Determining the unknown constants C i from system (19) and substituting them in Eq. (18), we obtain the solution. 

Results. To study the dependence of the stress-deformed state of a semi-infinite ice sheet upon vessel speed and 
distance of the line of motion from the edge of the ice, a series of calculations were made for various values of these 

parameters. Motion of a load with P = 0.4-106 N at velocities in the range 0-16 m/sec was considered, with the line of motion 
parallel to the edge varied from 50 m within the ice to 50 m away in the open water. 

The calculation results showed that with increase in load velocity from zero, deflections and stresses initially decreased 

from their static values. This can be explained by the effect of water inertia forces. With development of the oscillatory process 
which occurs with further increase in velocity, the deflections and stresses increase and reach maximum values at the resonant 

load speed. We note that similar stress-deformed state parameters were found for the case of an infinite ice sheet, with resonant 
velocity values practically coinciding for the two cases. 
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Analysis of the effect of the distance of the line of motion from the ice edge allows the following conclusions. As was 

expected, upon approach of  the load to the edge from the direction of the ice itself, the values of  w, a x, ay increase. While 

w and cr x increase 2-3 times, ay increases 7 times. Further translation of the load from the ice edge with motion along that edge 

in open water leads to further increase in w and ~r x with decrease in Cry. This can be explained by the fact that motion along 

the edge in the open water excites purely gravitational waves. The water medium is more yielding, so the total energy of these 

waves proves to be higher than that of the deflection-gravitation waves excited by the load during motion over the ice itself. 

The gravitational waves penetrating under the ice sheet lead to a redistribution of elastic state reactions and increase in 

deformations. 

An increase in deflections and stresses is observed out to some certain distance of the line of motion from the ice sheet 

edge, after which for further departure of the load those values decrease asymptotically. 

Calculations were performed by the finite element method. The discrete model of the ice-water  system is shown in 

Fig. 2, where a = 50 m. As is evident from Fig. 2, the region had the form of a 300 • 200 m rectangle, divided into 24 finite 

elements 50 • 50 m in size. Experience from previous studies permits us to be confident that for the given number of elements 

and cell size the values found are quite reliable. 

A general picture of the character of stress-deformed state of semi-infinite ice sheet canbe gatheredfrom Fig. 3, which 

shows spatial distributions of  w, a x, Cry from an ice thickness h = 0.25 m, basin depth H = 5 m, and velocity v = 4 m/see. 

The calculation results were used to construct graphs of the maximum deflection Wma x and maximum stresses area x, 

area x as functions of  velocity v (Fig. 4) and of deflection and stress at the midpoint of the edge as functions of  the position of 

the vessel motion line (Fig. 5). 

CONCLUSIONS 

The presence of  a free edge, along which the load moves, has practically no effect on the resonant velocity values Vp 

obtained for an infinite ice sheet of  finite thickness (for the ease calculated v r = 7.3 m/see. The second peak in amplitude and 

stress (Fig. 4) at v = 10 m/see, just as in the theory of wave resistance of a basin to open water, exists only in theory. 
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To break an ice sheet over a large area the most effective AVC motion is not along the edge of the ice, but in the open 

water at a certain distance from the edge (as is evident from Fig. 5, for the case calculated this distance is 12.5 m). This 
conclusion follows from overall analysis of the stress-deformed state of the ice sheet [4]. The moving deflection-gravity waves 

developed in the ice have a long front and a direction perpendicular to the motion of the load, and at the peaks of these waves 

a x causes the main failure of the ice. Additional damage (further breakup of fragments, splitting off of the edge, etc.) occurs 
upon transformation of these waves at the breakage points. 

If the problem is to widen a channel extending through the ice, then the ACV should move at the resonant velocity 
along the edge of the ice sheet. The stress ay is then a maximum and the open region expands by breakoff of the channel edges. 
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